Lifting Model Sampling for General Game Playing to Incomplete-Information Models
نویسندگان
چکیده
General Game Playing is the design of AI systems able to understand the rules of new games and to use such descriptions to play those games effectively. Games with incomplete information have recently been added as a new challenge for general game-playing systems. The only published solutions to this challenge are based on sampling complete information models. In doing so they ground all of the unknown information, thereby making information gathering moves of no value; a well-known criticism of such sampling based systems. We present and analyse a method for escalating reasoning from complete information models to incomplete information models and show how this enables a general game player to correctly value information in incomplete information games. Experimental results demonstrate the success of this technique over standard model sampling.
منابع مشابه
Application of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملThe Efficiency of the HyperPlay Technique Over Random Sampling
We show that the HyperPlay technique, which maintains a bag of updatable models for sampling an imperfect-information game, is more efficient than taking random samples of play sequences. Also, we demonstrate that random sampling may become impossible under the practical constraints of a game. We show the HyperPlay sample can become biased and not uniformly distributed across an information set...
متن کاملEvaluating Answer Set Clause Learning for General Game Playing
In games with imperfect information, the ‘information set’ is a collection of all possible game histories that are consistent with, or explain, a player’s observations. Current game playing systems rely on these best guesses of the true, partially-observable game as the foundation of their decision making, yet finding these information sets is expensive. We apply reactive Answer Set Programming...
متن کاملStochastic Constraint Programming for General Game Playing with Imperfect Information
The game description language with incomplete information (GDL-II) is expressive enough to capture partially observable stochastic multi-agent games. Unfortunately, such expressiveness does not come without a price: the problem of finding a winning strategy is NEXPNP-hard, a complexity class which is far beyond the reach of modern constraint solvers. In this paper, we identify a PSPACE-complete...
متن کاملThe Beneficial or Harmful Effects of Computer Game Stress on Cognitive Functions of Players
Introduction: Video games are common cultural issues with great influence in all societies. One of the important cognitive effects of video games is on creating stress on video players. The present research objective was to study different types of stress in players based on video game styles. Methods: A total of 80 players, aged 18 to 30 years, played four types of video games; Ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015